PHOTOISOMERIZATION OF PHTHALOYL SYSTEM TO ALKYLIDENE PHTHALIDES

Kazuhiro MARUYAMA, Atsuhiro OSUKA*, and Hitomi SUZUKI* Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606 * Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790

Irradiation of a benzene solution of bicyclic diketones 3 and/or 4gave alkylidene phthalides $\underline{5}$ and $\underline{6}$ in good yields. Structural effects on the photoisomerization were discussed.

Acid- or base-catalyzed isomerization of phthaloyl system 1 to as-phthalyl system $\underline{2}$ has been long $known^{1)}$, but a photochemical counterpart has not been reported so far. In the course of our studies on the photochemical reactions of epoxynaphthoquinones, we found that bicyclic diketones 3a-h and 4a-h, upon irradiation, readily underwent photoisomerization, giving alkylidene phthalides 5a-h and 6a-h in good yields. The present work is concerned with investigation on the photoisomerization of a series of phthaloyl compounds 3a-h and 4a-h.

Irradiation of a benzene solution (0.02M) of $\underline{3a-h}$ and/or $\underline{4a-h}^2$ with a high-pressure Hg lamp for 30 hours gave a mixture of alkylidene phthalides 5a-h and 6a-h. These phthalides 5a-h and 6a-h. lides were separated by chromatography on silica gel and their structural assignments

Reactant			Total Yield (%) ^a)	<u>5</u> / <u>6</u> b)	Products (mp, °C)
<u>3a</u>	+	<u>4a</u>	80	1.1	<u>5a</u> (84.5) <u>6a</u> (88)
<u>3b</u>	+	<u>4b</u>	75	1.2	<u>5b</u> (88) <u>6b</u> (90)
<u>3c</u>	+	<u>4c</u>	73	1.3	<u>5c</u> (105) <u>6c</u> (oil)
<u>3d</u>	+	<u>4d</u>	66	1.0	<u>5d</u> (oil) <u>6d</u> (126)
<u>3e</u>	+	<u>4e</u>	92	1.2	<u>5e</u> (119) <u>6e</u> (124)
<u>3f</u>	+	<u>4f</u>	90	0.9	<u>5f</u> (127) <u>6f</u> (144)
<u>3g</u>	+	<u>4g</u>	86	0.9	<u>5g</u> (135) <u>6g</u> (130)
<u>3h</u>	+	<u>4h</u>	86	1.0	<u>5h</u> (153) <u>6h</u> (148)

Table I. Photoisomerization of $\underline{3}$ and/or $\underline{4}$ to $\underline{5}$ and $\underline{6}$.

a), Isolated yields. b), Determined by HPLC.

were made on the basis of their spectra (${}^{1}\text{H}$ NMR, IR, and mass) and elemental analyses. Further, the alkylidene phthalide structure of $\underline{5a}$ and $\underline{6a}$ was evidenced by the ozonolysis of $\underline{5a}$ and $\underline{6a}$, which gave phthalic anhydride $\underline{7}$ and 3-acetoxy-2-butanone ($\underline{8}$). The allylic methine protons of $\underline{5a}$ -h (H^{a} ; designated in eq. 1) were deshielded relative to those of $\underline{6a}$ -h without exception, because of the proximity of H^{a} to the benzene ring in $\underline{5a}$ -h. The results are summarized in Table I.

$$5a$$
 and $6a$ CH_2Cl_2 CH_2Cl_2 OAc

(E)-Alklidene phthalide $\underline{5a}$ photoisomerized to (Z)-isomer $\underline{6a}$ and $vice\ versa$. After 15 hours, a photoequilibrated mixture of $\underline{5a}$ and $\underline{6a}$ ($\underline{5a/6a}$ =1.2) was formed. Even at low conversion of $\underline{3a}$ and $\underline{4a}$ (5%), under which conditions photo-interconversion between $\underline{5a}$ and $\underline{6a}$ was negligible, this product ratio ($\underline{5a/6a}$) remained unchanged. Thus, $\underline{5a}$ and $\underline{6a}$ should be formed in the nearly same ratio from the photolysis of either $\underline{3a}$ or $\underline{4a}$.

A plausible mechanism for the photoisomerization of $\underline{3}$ and/or $\underline{4}$ to $\underline{5}$ and $\underline{6}$ is shown in Scheme I. The photoisomerization could begin with α -cleavage, followed by lactonization to give 1,4-diradicals $\underline{3}$ " and $\underline{4}$ " that cleaved to give $\underline{5}$ and $\underline{6}$. The α -cleavage of alkyl phenyl ketones is known as a highly reversible process and the

I

or
$$CO_2Me$$
 $h\nu$ No Reaction $\frac{10}{9}$

Scheme

apparent inefficient quantum yields for the α -cleavage are explained in terms of the cage recombination of α -cleavaged radicals⁴). When the carbonyl group is present in enough proximity for the attack of the resulting acyl radical, some parts of $\underline{3a}$ ' and $\underline{4a}$ ' could undergo lactonization, leading to the formation of $\underline{3a}$ " and $\underline{4a}$ ", respectively. The pronounced preference of a-fission over b-fission, which is evident from the product distribution⁵), is consistent with a stepwise radical rearrangement, since radical intermediate $\underline{3a}$ ' and $\underline{4a}$ 'may be fairly stabilized by the two ethereal oxygen atoms adjacent to the radical center.

For comparison, 2,2,4,4-tetramethylbenzosuberan-1,5-dione (9) and 2,4-dimethoxy-

carbonyl-2,4-dimethylbenzosuberan-1,5-dione $(\underline{10})^6$) were irradiated in benzene but no photoisomerization was observed even after 40 hours. Therefore, the radical stabilizing ability of the ethereal oxygen atoms situated β to carbonyl group or the strain arising from the bicyclic structure of $\underline{3}$ and $\underline{4}$ might be playing an important role in the facile photoisomerization of phthaloyl compounds to alkylidene phthalides.

References and Notes

- 1) L. F. Fieser and M. Fieser, "Advanced Organic Chemistry", Reinhold Publishing Corporation, New York, P. 796.
- 2) Bicyclo diketones <u>3a-h</u> and <u>4a-h</u> were obtained from the photo-induced cycloaddition of 2,3-dimethyl-2,3-epoxy-2,3-dihydro-1,4-naphthoquinone to aldehydes.
 K. Maruyama and A. Osuka, Chem., Lett., 77 (1979).
- 3) Spectral data of $\underline{5a}$ and $\underline{6a}$; $\underline{5a}$: IR (KBr) 3000, 1775(phthalide C=0), 1740(ester C=0), and 1238 cm⁻¹; 1 H NMR (CDCl₃) δ 1.50(d, J=7Hz, 3H), 2.09(s, 6H), 6.27(q, J=7Hz, 1H), and 7.44-8.02(m, 4H); MS (m/e) 246(M⁺, 25), 205(15), 204(75), 186(70), and 161(100). $\underline{6a}$: IR (KBr) 3000, 1775(phthalide C=0), 1740(ester C=0), and 1242 cm⁻¹; 1 H NMR (CDCl₃) δ 1.44(d, J=7Hz, 3H), 2.07(s, 3H), 6.14(q, J=7Hz, 1H), and 7.40-8.00 (m,4H); MS (m/e) 246(M⁺, 25), 204(64), 187(50), 186(75), and 161(100).
- 4) F. D. Lewis and J. G. Magyer, J. Am. Chem. Soc., 95, 5973 (1974).
- 5) Once being b-fission occurred, enol ketones $\underline{11}$ and $\underline{12}$ would be formed. Neither $\underline{11}$ nor $\underline{12}$ was found in the reaction.

6) G. L. Buchanan and J. K. Sutherland, J, Chem. Soc., 2620 (1956).

(Received October 2, 1979)